Fully quantum mechanical energy optimization for protein-ligand structure
نویسندگان
چکیده
We present a quantum mechanical approach to study protein-ligand binding structure with application to a Adipocyte lipid-binding protein complexed with Propanoic Acid. The present approach employs a recently develop molecular fractionation with a conjugate caps (MFCC) method to compute protein-ligand interaction energy and performs energy optimization using the quasi-Newton method. The MFCC method enables us to compute fully quantum mechanical ab initio protein-ligand interaction energy and its gradients that are used in energy minimization. This quantum optimization approach is applied to study the Adipocyte lipid-binding protein complexed with Propanoic Acid system, a complex system consisting of a 2057-atom protein and a 10-atom ligand. The MFCC calculation is carried out at the Hartree-Fock level with a 3-21G basis set. The quantum optimized structure of this complex is in good agreement with the experimental crystal structure. The quantum energy calculation is implemented in a parallel program that dramatically speeds up the MFCC calculation for the protein-ligand system. Similarly good agreement between MFCC optimized structure and the experimental structure is also obtained for the streptavidin-biotin complex. Due to heavy computational cost, the quantum energy minimization is carried out in a six-dimensional space that corresponds to the rigid-body protein-ligand interaction.
منابع مشابه
Gain optimization of the optical waveguide based on the quantum box core/shell structure
In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...
متن کاملGain optimization of the optical waveguide based on the quantum box core/shell structure
In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...
متن کاملCombining quantum mechanical ligand conformation analysis and protein modeling to elucidate GPCR-ligand binding modes.
SAR beyond protein-ligand interactions: By combining structure-affinity relationships, protein-ligand modeling studies, and quantum mechanical calculations, we show that ligand conformational energies and basicity play critical roles in ligand binding to the histamine H4 receptor, a GPCR that plays a key role in inflammation.
متن کاملImportance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach
The extent to which accuracy of electric charges plays a role in protein-ligand docking is investigated through development of a docking algorithm, which incorporates quantum mechanical/molecular mechanical (QM/MM) calculations. In this algorithm, fixed charges of ligands obtained from force field parameterization are replaced by QM/MM calculations in the protein environment, treating only the ...
متن کاملQuantum Mechanical Pairwise Decomposition Analysis of Protein Kinase B Inhibitors: Validating a New Tool for Guiding Drug Design
Quantum mechanical semiempirical comparative binding energy analysis calculations have been carried out for a series of protein kinase B (PKB) inhibitors derived from fragment- and structure-based drug design. These protein-ligand complexes were selected because they represent a consistent set of experimental data that includes both crystal structures and affinities. Seven scoring functions wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of computational chemistry
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2004